Lihat juga: matriks, eliminasi Gauss-Jordan, Transformasi linier geometris
Gunakan kalkulator di bawah ini untuk mencari solusi dari sistem persamaan linier dengan 2, 3 ataupun sampai 10 variabel.
Lihat di bawah untuk belajar berbagai macam metode untuk menyelesaikan sistem persamaan linier.
Pilih berapa variabel di dalam sistem persamaan
Paling sedikit ada lima cara / metode untuk mencari solusi sistem persamaan linier.
Sebagai contoh, marilah kita coba untuk mencari solusi sistem persamaan linier dengan tiga variabel berikut ini
Metode ini bekerja dengan care mengeliminasi (menghilangkan) variabel-variabel di dalam sistem persamaan hingga hanya satu variabel yang tertinggal.
Pertama-tama, lihat persamaan-persamaan yang ada dan coba cari dua persamaan yang mempunyai koefisien yang sama (baik positif maupun negatif) untuk variabel yang sama. Misalnya, lihat persamaan dan . Koefisien untuk adalah dan untuk masing-masing persamaan. Kita dapat menjumlah kedua persamaan ini untuk menghilangkan dan kita mendapatkan persamaan .
Perhatikan bahwa persamaan terdiri atas variabel dan . Sekarang kita perlu persamaan lain yang terdiri atas variabel yang sama dengan persamaan . Untuk mendapatkan persamaan ini, kita akan menghilangkan dari persamaan dan . Dalam persamaan dan , koefisien untuk adalah dan masing-masing. Untuk menghilangkan , kita kalikan persamaan dengan lalu mengurangkan persamaan dari persamaan .
Dengan persamaan dan , mari kita coba untuk menghilangkan .
Dari persamaan kita dapatkan . Sekarang kita bisa subtitusikan (masukkan) nilai dari ke persamaan untuk mendapatkan nilai .
Akhirnya, kita substitusikan (masukkan) nilai dari dan ke persamaan untuk mendapatkan .
Jadi solusi sistem persamaan linier di atas adalah , , .
Pertama-tama, marilah kita atur persamaan ssupaya hanya ada 1 variabel di sebelah kiri.
Sekarang kita substitusi ke persamaan .
Dengan cara yang sama seperti di atas, substitusi ke persamaan .
Sekarang kita atur persamaan supaya hanya ada 1 variabel di sebelah kiri.
Kemudian, substitusi nilai dari ke persamaan .
Sekarang kita sudah tahu nilai dari , kita dapat masukkan nilai ini ke persamaan untuk mencari .
Akhirnya, kita substitusikan nilai dari and ke persamaan untuk mendapatkan nilai .
Penyelesaian sistem persamaan linier dengan metode grafik dilakukan dengan cara menggambar garis garis atau bidang planar yang merupakan representasi dari persamaan-persamaan yang ada dalam sistem tersebut. Solusinya adalah koordinat-koordinat yang merupakan titik potong dari garis-garis ataupun bidang-bidang planar itu.
Sebagai contoh, marilah kita lihat sistem persamaan liniear dengan dua variabel berikut ini.
Gambar kedua garis dari persamaan-persamaan di atas.
Seperti terlihat pada grafik di atas, kedua garis itu bertemu (mempunyai titik potong) pada titik . Ini adalah solusi dari sistem persamaan linier tersebut, yaitu , .
Untuk persamaan linier dengan tiga variabel, solusinya adalah titik pertemuan dari tiga bidang planar dari masing-masing persamaan.
Sistem persamaan linier yang terdiri atas persamaan-persamaan , dan di atas dapat juga ditulis dengan bentuk notasi matriks sebagai berikut
Solusinya adalah matriks . Agar kita dapat mengisolasi sendirian di salah satu sisi dari persamaan di atas, kita kalikan kedua sisi dari persamaan di atas dengan invers dari matriks .
Sekarang, untuk mencari kita perlu mencari . Silakan melihat halaman tentang matriks untuk belajar bagaimana mencari invers dari sebuah matriks.
Jadi solusinya adalah , , .
Metode ini dapat digunakan untuk menyelesaikan sistem persamaan linier dengan variabel. Kalkulator di atas juga menggunakan metode ini untuk menyelesaikan sistem persamaan linier.
Sistem persamaan liniear yang terdiri atas persamaan-persamaan , dan dapat juga dinyatakan dalam bentuk matriks teraugmentasi seperti berikut
Dengan melakukan serangkaian operasi baris (Eliminasi Gauss), kita dapat menyederhanakan matriks di atas untuk menjadi matriks Eselon-baris.
Kemudian kita bisa substitusikan kembali nilai-nilai yang kita dapat untuk mencari nilai dari semua variabel. Atau, kita juga bisa meneruskan dengan serangkaian operasi baris lagi sehingga matriks di atas menjadi matriks yang Eselon-baris tereduksi (dengan menggunakan Eliminasi Gauss-Jordan).
Dengan melakukan operasi Eliminasi Gauss-Jordan, kita mendapatkan solusi dari sistem persamaan linier di atas pada kolom terakhir: , , .
Untuk melihat secara mendetil operasi baris yang diperlukan, silakan melihat halaman tentang Eliminasi Gauss-Jordan.
See also: matrix, Gauss-Jordan elimination, Geometric Linear Transformation